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Abstract
Taking the standard zero-curvature approach we derive an infinite set of
integrable equations, which taken together form the negative Volterra hierarchy.
The resulting equations turn out to be nonlocal, which is usual for the negative
flows. However, in some cases the nonlocality can be eliminated. Studying
the combined action of both positive (classical) and negative Volterra flows,
i.e. considering the differential consequences of equations of the extended
Volterra hierarchy, we deduce local equations which seem to be promising
from the viewpoint of applications. The presented results give answers to
some questions related to the classification of integrable differential-difference
equations. We also obtain dark solitons of the negative Volterra hierarchy using
an elementary approach.

PACS numbers: 05.45.Yv, 02.30.Ik

1. Introduction

The present paper is devoted to an integrable hierarchy which can be viewed as an extension
of the Volterra hierarchy (VH) by taking into account the so-called ‘negative’ flows. The idea
of negative flows is not new. One of the first examples (and maybe the most striking one) is
the relation between the AKNS and sine-Gordon models [1]: the sine-Gordon equation can
be derived as the negative flow of the AKNS hierarchy. Some recent results and approaches
to this problem can be found in [2–5]. The negative flows have been constructed for almost
all known integrable systems. But there are a few exceptions, and the Volterra model seems
to be among them: to our knowledge, the systematic derivation of its ‘negative’ equations has
not been discussed in the literature.

Some of the equations belonging to the extended Volterra hierarchy are already known.
First, it contains the famous 2D Toda lattice [6]. We would also like to mention the works of
De Lillo and Konotop [7], who discussed a nonlocal modification of the Volterra chain and
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recent papers by Boiti et al [8, 9], who derived and studied a new integrable discretization of
KdV. As will be shown below, these equations belong to the extended VH.

Another indication of the fact that the negative Volterra flows should be studied more
carefully is related to the problem of classification of the integrable discrete equations. In the
paper by Yamilov [10] it has been shown that all equations of the form

un,t = f (un+1, un, un−1) (1)

can be divided into three classes. One of them can be presented as

un,t = p(un)un+1un−1 + q(un)(un+1 + un−1) + r(un)

un+1 − un−1
(2)

where p, q and r are polynomials in n. This equation is known to satisfy integrability tests, to
possess an infinite set of local conservation laws and generalized symmetries. However, as was
stated, for example, in [11], ‘it is the only example of nonlinear chain of the form (1) which
cannot be reduced to the Toda or Volterra equations by Miura transformations’. In this paper
we will show that there is no need to look for substitutions converting (2) into Volterra chain,
equations (2) (at least the simplest of them) are nothing but equations of the extended VH.

The most straightforward approach to the negative flows is to consider them in the
framework of the inverse scattering transform. In section 2 we start with the standard zero-
curvature representation (ZCR) for the VH and derive equations of the negative Volterra
subhierarchy. The resulting equations turn out to be nonlocal. It is usual for the case of
negative flows. However, nonlocality does not mean that equations are not interesting from
the viewpoint of possible applications. Moreover, sometimes nonlocality can be eliminated.
This can be achieved by a redefinition of the variables or by considering some differential
consequences of the equations in question. Namely this is the topic of section 3 where we
present the local equations which in this or another way are related to the nonlocal Volterra
equations. Finally, in section 4 we derive the soliton solutions for the negative VH.

2. Zero-curvature representation

The inverse scattering approach for integrable systems is based on the ZCR, when our nonlinear
equations are presented as a compatibility condition for some linear system. For example, the
Volterra chain,

u̇n = un(un+1 − un−1) n = 0,±1,±2, . . . (3)

is the compatibility condition,

U̇n = Vn+1Un − UnVn (4)

for the system [12]{
�n+1 = Un�n

�̇n = Vn�n

(5)

where

Un = Un(λ) =
(

λ un

−1 0

)
Vn = Vn(λ) =

(
un λun

−λ un−1 − λ2

)
(6)

and λ is an arbitrary constant. Traditionally Volterra and Toda chains are considered more often
in the framework of the ‘big’ Lax representation, when the system is finite (n = 1, . . . , N)

and U and V are N × N matrices. In this paper we will use the 2 × 2 U–V pair (6). This
approach is equivalent to the N × N representation and sometimes even more convenient
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(that is, it can be more easily modified to the cases of different boundary conditions, including
the soliton case when N = ∞).

The choice of the U–V pair for the system (5), even for a given U-matrix, is not unique.
The matrix V in (6) is a second-order polynomial in λ. By simple algebra one can find other
matrices V , which are polynomials of higher order, such that ZCR (4) will be satisfied for all λ

provided un solve some nonlinear evolutionary equations. These equations are called ‘higher
Volterra equations’. Taken together they constitute the VH.

Now we are going to derive the negative Volterra flows. The idea is simple: let us search
for the V -matrices which are polynomials not in λ but in λ−1. For example, the simplest of
such V -matrices, which is linear in λ−1, is given by

Vn =
(

0 −pn−1

λ
1

λpn−1

1
pn−1

)
. (7)

It is easy to verify that (5) will be consistent if un and pn satisfy the system{
u̇n = pn−1 − pn

un = pn−1pn.
(8)

This is the first negative Volterra equation.
Now our aim is to obtain an infinite set of similar V -matrices which solve ZCR (4). Using

the notation

Vn =
(

an bn

cn dn

)
(9)

we can rewrite (4) as

0 = λ(an+1 − an) − bn+1 − uncn (10)

0 = bn + uncn+1 (11)

0 = λcn+1 + an − dn+1 (12)

and

u̇n = un(an+1 − dn) − λbn (13)

or, after eliminating bn and dn,

0 = λ(an+1 − an) + un+1cn+2 − uncn (14)

u̇n = un[an+1 − an−1 + λ(cn+1 − cn)]. (15)

It is easy to show that (14) and (15) possess solutions where an are polynomials of the (2j−2)th
order in λ−1 while cn are polynomials of the (2j −1)th order for j = 1, 2, . . . . In what follows
we indicate different polynomials with the upper index, a(j)

n , c
(j)
n , and introduce an infinite set

of times, t̄j , to distinguish the resulting nonlinear equations.
By simple algebra one can establish the following relations between different polynomials:

a(j+1)
n = λ−2a(j)

n + λ−2α(j)
n (16)

c(j+1)
n = λ−2c(j)

n + λ−1γ (j)
n (17)

where α
(j)
n and γ

(j)
n do not depend on λ. Substituting (16) and (17) into (14) and (15) one can

convert our system into
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α
(j)

n+1 − α(j)
n + un+1γ

(j)

n+2 − unγ
(j)
n = 0 (18)

γ (j)
n + α(j+1)

n + α
(j+1)

n−1 = 0 (19)

and
∂

∂t̄j
ln un = α

(j)

n−1 − α
(j)

n+1. (20)

After introducing the tau-functions of the VH,

un = τn+1τn−2

τnτn−1
(21)

equations (18) and (19) can be solved,

α(j)
n = ∂

∂t̄j
ln

τn−1

τn

(22)

γ (j)
n = ∂

∂t̄j+1
ln

τn

τn−2
(23)

and the resulting equations become

τn−1τn+1
∂

∂t̄j+1
ln

τn+1

τn−1
+ τ 2

n

∂2

∂t̄1∂t̄j
ln τn = 0 (24)

together with the first one

τn−1τn+1
∂

∂t̄1
ln

τn+1

τn−1
= τ 2

n . (25)

These equations can be rewritten in the Hirota bilinear form as

2Dj+1τn+1 · τn−1 + DjD1τn · τn = 0 (26)

and

D1τn+1 · τn−1 = τ 2
n (27)

where

Dj a · b = ∂

∂ξ
a(. . . , t̄j + ξ, . . .)b(. . . , t̄j − ξ, . . .)

∣∣∣∣
ξ=0

. (28)

3. Some integrable models

In the previous section we have obtained an infinite set of integrable equations. These equations
are nonlocal and it is difficult to say whether they are of any importance, say, from the viewpoint
of applications. However, a hierarchy is more than a set of equations. The key point is
that all equations of a hierarchy are compatible (some notes on this question can be found in
the appendix). Hence we can consider them simultaneously and study the combined action of
different flows. In other words, we can take some finite set of equations of a hierarchy and
analyse equations which follow from this system. So, this is the aim of this section. Starting
with the equations of the VH (both negative, derived above, and positive, i.e. classical Volterra
equations) we will deduce some of their consequences, which are local and some of which
seem to be more promising for applications.
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3.1. 2D Toda lattice and the VH

First let us consider the simplest negative equation (25) together with the Volterra equation (3)

∂

∂t̄
ln

τn+1

τn−1
= 1

pn

(29)

∂

∂t
ln un = un+1 − un−1 (30)

where pn is related to τn by

pn = τn−1τn+1

τ 2
n

. (31)

One can derive from the second equation that

∂

∂t

1

pn

= pn−1 − pn+1 (32)

which leads to

∂2

∂t∂ t̄
ln τn = −τn−1τn+1

τ 2
n

(33)

where an unessential constant has been omitted. This equation, which can be rewritten in
terms of pn as

∂2

∂t∂ t̄
ln pn = −pn−1 + 2pn − pn+1 (34)

is nothing but the 2D Toda lattice [6]. So, we have shown explicitly that tau-function (21)
of the VH is at the same time the tau-function of the 2D Toda lattice, or, in other words,
that the 2D Toda equation can be embedded into the VH. The reverse statement seems not
to be true: not every solution of (33) should solve (29) and (30). In this sense splitting the
(2+1)-dimensional equation (33) into two (1+1)-dimensional equations from the VH is a kind
of ansatz. But the class of solutions of the 2D Toda model which can be obtained by solving
Volterra equations (29) and (30) contains a large number of important solutions such as, e.g.,
N-soliton and finite-gap quasiperiodic solutions. It is obvious that this is a relation between
the 2D Toda model and the extended VH and could not be revealed if dealing with the classical
Volterra equations only.

3.2. Singular chain

Another consequence of (25) is that the quantity

xn = ∂

∂t̄1
ln τn (35)

satisfies

ẋn = 1

xn−1 − xn+1
(36)

where the dot stands for the differentiation with respect to the first ‘positive’ Volterra time
(i.e. time which corresponds to (3)), t, ẋn = ∂xn/∂t . Thus we have come to an equation of
the type (2) mentioned in the introduction. So, equations (2) probably can be embedded in the
extended VH. Note that the quantity xn cannot be expressed locally in terms of the ’positive’
Volterra subhierarchy, without invoking the first negative flow.
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Equation (36) seems to be non-typical for physical applications. However, it can be easily
converted to a more usual form. Indeed, it follows from (36) that the quantities Qn and Pn,
given by

Qn = 1

2
ln

xn+1

xn−1
Pn = xn+1xn (37)

satisfy the system

2Q̇n = 1

Pn − Pn+1
+

1

Pn − Pn−1
(38)

2Ṗ n = −coth(Qn + Qn+1) − coth(Qn + Qn−1) (39)

which is a Hamiltonian system

Q̇n = ∂H
∂Pn

Ṗ n = − ∂H
∂Qn

(40)

with the standard Poisson bracket and the Hamiltonian given by

H = 1

2

∑
n

{ln |Pn − Pn−1| + ln | sinh(Qn + Qn−1)|}. (41)

3.3. Integrable dynamics of roots of a 3-polynomial

The following system is a ‘toy’ model which can be derived from (36) by imposing the periodic
conditions xn+3 = xn. Noting that the product

� = (x1 − x2)(x2 − x3)(x3 − x1) (42)

is a constant and rescaling the time t → � · t one can rewrite (36) as


ẋ1 = (x1 − x2)(x1 − x3)

ẋ2 = (x2 − x1)(x2 − x3)

ẋ3 = (x3 − x1)(x3 − x2)

(43)

or

ẋk = P ′(xk) k = 1, 2, 3 (44)

where P is an arbitrary monic 3-polynomial, and xk are its roots:

P(x) =
3∏

k=1

(x − xk). (45)

Of course, it is a very simple ordinary differential equation, which can be studied without
using the inverse scattering transform machinery. In terms of the first symmetric function of
the roots, σ = x1 + x2 + x3, it can be rewritten as the stationary KdV,

σttt − 6σ 2
t = 0 (46)

(to make the following formulae more readable we indicate differentiation with subscripts) or,
after introducing a ‘logarithmic potential’ ψ ,

ψt/ψ = −σ (47)

as

ψttttψ − 4ψtttψt + 3ψ2
tt = 0 (48)

which is the expanded form of the simple bilinear equation

D4
t ψ · ψ = 0. (49)
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3.4. (3+1)-dimensional example

The last example we want to discuss differs from those presented above. All previous equations
considered in this section were difference-differential systems. Now we derive from the VH
some partial differential equations in (3+1)-dimensional (physical) spacetime.

Our starting point is equation (24) which can be presented as

pn

∂

∂t̄j+1
ln

τn+1

τn−1
= − ∂2

∂t̄j ∂ t̄1
ln τn. (50)

Acting on both sides of this equation by the ∂/∂t̄k operator one can note that the right-hand
side is symmetrical in j and k, which leads to(

∂

∂t̄j
pn

∂

∂t̄k+1
− ∂

∂t̄k
pn

∂

∂t̄j+1

)
ln

τn+1

τn−1
= 0. (51)

On the other hand, differentiating (50) with respect to the first ‘positive’ Volterra time t one
gets

∂

∂t
pn

∂

∂t̄j+1
ln

τn+1

τn−1
= − ∂

∂t̄j

(
∂2

∂t∂ t̄1
ln τn

)
(52)

which can be rewritten using (25) as

∂

∂t
pn

∂

∂t̄j+1
ln

τn+1

τn−1
= ∂

∂t̄j
pn. (53)

It is easy to note that equations (51) and (53) form a closed system

∂

∂t̄j
p

∂�

∂t̄k+1
− ∂

∂t̄k
p

∂�

∂t̄j+1
= 0 (54)

∂

∂t
p

∂�

∂t̄j+1
= ∂p

∂t̄j
(55)

for two functions

p = pn and � = ln
τn+1

τn−1
n = constant (56)

with n being fixed.
From this multidimensional system one can derive a rather interesting consequence in

3+1 dimensions. To this end we denote

(x, y, z) = (t̄1, t̄2, t̄3) (57)

and introduce vector �u by

�u =
(

∂�

∂t̄2
,
∂�

∂t̄3
,
∂�

∂t̄4

)T

. (58)

In these terms equation (55) can be rewritten as

∂

∂t
p�u = ∇p (59)

where ∇ is the three-dimensional gradient, ∇ = (∂/∂x, ∂/∂y, ∂/∂z), while equation (54)
gives

curl p�u = 0. (60)



220 G M Pritula and V E Vekslerchik

Eliminating p from (59) and (60) one obtains that vector �u satisfies the following equation:

curl �u =
[
�u × ∂�u

∂t

]
(61)

where [· · · × · · ·] is the usual three-dimensional wedge (vector) product.
Equation (61), which can be termed as ‘dual to’ the Euler equation, ∂�u/∂t = [�u× curl �u],

has already been discussed in the literature. For example, it has been proposed as a relativistic
generalization of the curl �vs = 0 condition for the velocity of a superfluid condensate (see,
e.g., [13]). However, its relation with the integrable Volterra system (which also implies
integrability of this model) seems to be new, and we are going to present more elaborated
studies of (61) in future papers.

4. Soliton solutions

Here we would like to recall that equations are not only to be derived or classified, but should
also be solved. In this section we present some classes of solutions of the negative VH, namely
the dark soliton ones.

There are many ways to derive pure-soliton solutions for an integrable model: the inverse
problem, the dressing method, Backlund–Darboux transforms, Hirota’s ansatz. The key idea
of the last approach is that soliton solutions of all the integrable models possess the same
structure, and the only thing one has to do while solving a particular equation is to determine
some constants. In this paper we also exploit this fact. However, we do not use Hirota’s
technique but solve our equations using the elementary matrix calculus. Our starting point is
that usually N-soliton solutions can be constructed of determinants of some combinations of
the N × N matrices having the following structure:

(An)jk = �jank(t)

Lj − Rk

(62)

i.e. matrices which satisfy the equation

LAn − AnR = |�〉〈an|. (63)

Here we use the ‘bra-ket’ notation,

〈an| = (an,1, . . . , an,N) |�〉 = (�1, . . . , �N )T (64)

and L and R are some diagonal matrices

L = diag(L1, . . . , LN) R = diag(R1, . . . , RN). (65)

4.1. Algebra of matrices (62)

Before proceeding further we present some formulae related to matrices (62) which we need
to construct soliton solutions of the negative Volterra equations under the so-called ‘finite-
density’ boundary conditions. We do not consider the most general case of (63), but restrict
ourselves to

L = R−1 (66)

and specify from the beginning the n-dependence by

An+1 = AnR (67)

(as will be shown below, namely these matrices we need for our purposes). From (63), which
we rewrite now as

R−1An − An+1 = |�〉〈an| (68)
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or

AnZ − ZAn+1 = Z|�〉〈an|Z (69)

where

Z = (I + R−1)−1 (70)

and I is an N × N unit matrix, one can derive that matrices Fn inverse to I + An,

Fn = (I + An)
−1 (71)

satisfy the identities

Fn+1R
−1 − R−1Fn−1 = Fn+1|�〉〈an−1|Fn−1 (72)

and

ZFn+1 − FnZ = ZFn+1|�〉〈an|FnZ. (73)

These relations, together with the following formulae:

1 − 〈an|FnZ|�〉 = ωn+1

ωn

(74)

1 + 〈an−1|ZFn|�〉 = ωn−1

ωn

(75)

where

ωn = det(I + An) (76)

lead to

ωnFnZ|�〉 = ωn+1ZFn+1|�〉 (77)

ωn〈an|FnZ = ωn+1〈an|ZFn+1. (78)

Formulae (74) and (75) follow from (67) and the fact that for any bra-vector (i.e. N-row) 〈u|
and any ket-vector (i.e. N-column) |v〉, det (I + |v〉〈u|) = 1 + 〈u|v〉, while (77) and (78) can
be obtained from (73) by multiplying it by |�〉 and 〈an|. Formulae (72)–(78) are all we need
in the following consideration.

4.2. Auxiliary system

Now we are ready to solve auxiliary equations

∂̄1 ln
ωn+1

ωn−1
= ω2

n

ωn+1ωn−1
− 1 (79)

and

∂̄j+1 ln
ωn+1

ωn−1
= − ω2

n

ωn+1ωn−1
∂̄1j ln ωn. (80)

Solutions of these equations then can be easily modified to become solutions of the negative
VH under the non-vanishing boundary conditions un → u∞ as n → ±∞.

The crucial point of the ansatz (62) is that dependence on times t̄1, t̄2 . . . is incorporated
in the N-rows 〈an| = 〈an(t̄1, t̄2, . . .)|. Moreover, we assume (which is usual for pure soliton
solutions) that ln ank is a linear function of time. Hence, differentiating the A-matrices leads
to multiplication from the right by some constant matrices, Cj ,

∂

∂t̄j
An = AnCj (81)
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which should be determined. As follows from (81),

∂

∂t̄j
ln ωn = trFnAnCj = tr(I − Fn)Cj (82)

which gives

∂

∂t̄j
ln

ωn+1

ωn−1
= tr(Fn−1 − Fn+1)Cj . (83)

Using (72) and the fact that R and Cj commute, the last equation can be rewritten as

∂

∂t̄j
ln

ωn+1

ωn−1
= tr(R−1Fn−1 − Fn+1R

−1)CjR (84)

= −〈an−1|Fn−1CjRFn+1|�〉. (85)

On the other hand, by multiplying (74) and (75) one can derive the identity

ω2
n

ωn−1ωn+1
= 1 − 〈an−1|Fn−1XnFn+1|�〉 (86)

where

Xn = Z(I + An+1) − (I + An−1)RZ + Z|�〉〈an|Z. (87)

Applying (72) one gets

Xn = (I − R)Z = constant (88)

i.e.

ω2
n

ωn−1ωn+1
− 1 = 〈an−1|Fn−1(R − I)ZFn+1|�〉. (89)

Comparing (85) and the last formula one can conclude that ωn solve (79) if

C1 = (R−1 − I)Z (90)

or

C1 = (I − R)(I + R)−1. (91)

Now our aim is to solve (80). Differentiating (82) with respect to t̄1 we get

∂2

∂t̄1∂t̄j
ln ωn = tr AnFnC1FnCj . (92)

From definition (91) of C1 and (69) one can derive

AnC1 = ZAn − AnZ + Z|�〉〈an−1|Z (93)

which leads to

AnFnC1Fn = FnZ − ZFn + FnZ|�〉〈an−1|ZFn. (94)

Noting that Z and Cj commute and that the trace of a commutator is zero, the right-hand side
of (92) can be rewritten as

tr AnFnC1FnCj = 〈an−1|ZFnCjFnZ|�〉 (95)

which gives, together with (77) and (78),

∂2

∂t̄1∂t̄j
ln ωn = ωn−1ωn+1

ω2
n

〈an−1|Fn−1CjZ
2Fn+1|�〉. (96)
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Comparing this expression and equation (85) for the derivative with respect to the (j + 1)th
time, t̄j+1, one can conclude that ωn is a solution of (80), if matrices Cj+1 and Cj are related by

Cj+1 = CjZ
2R−1. (97)

This recurrence together with the ‘initial condition’ (91) can be easily solved:

Cj = C1(R + R−1 + 2I)1−j = C1(R
1/2 + R−1/2)2−2j . (98)

In such a way we have shown that if the time dependence of the A-matrices is given by
(81) and (98), then the quantities ωn given by (76) solve (80).

4.3. Dark-soliton solutions of the VH

It is easy to see that equations (79) and (80) differ only in a constant term on the right-hand
side of (79), which can be taken into account by exp(nt̄1/2) multiplier: functions

τn = exp

(
nt̄1

2

)
ωn (99)

solve (25). The limiting values of the corresponding u-functions are unity and to meet general
‘finite-density’ boundary conditions,

lim
n→±∞ un = u∞ (100)

one has to add the u
n2/4
∞ factor and rescale the times t̄j → t̄j

/
u

j−1/2
∞ . The final formulae for

the N-soliton solutions of the VH can be written as

τn = un2/4
∞ exp

(
nt̄1

2
√

u∞

)
det

∣∣∣∣∣1 +
Rn

k ak(t̄)

R−1
j − Rk

∣∣∣∣∣
j,k=1,...,N

. (101)

The time dependence of ak on negative times is given by

ak(t̄) = ak(t̄1, t̄2, . . .) = a
(0)
k exp


 ∞∑

j=1

ν
(j)

k t̄j


 (102)

with

ν
(j)

k = 1√
u∞

1 − Rk

1 + Rk

[
u∞

(
2 + Rk + R−1

k

)]1−j
(103)

where Rk, a
(0)
k , k = 1, . . . , N , are arbitrary constants. Note that constants �j appearing in (62)

have been incorporated in a
(0)

k by the transform An → M−1AnM with M = diag(�1, . . . , �N )

which does not change determinants.

5. Conclusion

In the present paper we studied the negative Volterra flows. The main result of this work is
that even in the theory of, so to say, classical systems there are some questions which have not
been discussed in the literature yet. We applied the widely used zero-curvature approach to
the well-known scattering problem and obtained some results which seem to be new. Deriving
equations (24) and (25) or (26) and (27) is not a very difficult problem, though it fills some
gaps in the theory of one of the oldest integrable systems. However, a hierarchy is more
than a set of equations, and one can hardly enumerate all equations which are contained in
this or that hierarchy, i.e. to study all possible differential consequences of equations of a
given hierarchy. In section 3 we demonstrated that from the extended VH, which is a set of
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differential-difference equations, some of which are nonlocal, one can extract rather different
systems. For example, in our opinion it is very difficult to say a priori that equation (61) (a
vector partial differential equation in 3+1 dimensions) has any relation to the Volterra chain.
In future papers we are going to present some other integrable systems which can be
‘embedded’ into (or extracted from) the extended VH, and we hope that the results presented
above demonstrate that the theory of integrable systems is far from finished.
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Appendix

The question of compatibility of the equations of a hierarchy (or, in other words, of
commutativity of the corresponding flows) is of vital importance and usually not trivial.
The most straightforward approach to this problem is to derive the Hamiltonians generating
these flows and to show that they are in involution. However, the Hamiltonian representation
of the negative Volterra hierarchy is still unknown and is a subject of future studies. Thus here
we do not discuss this rather serious problem in the most general way and restrict ourselves to
proving the commutativity of the first (classical) Volterra flow (3) and all the negative flows
derived in this paper, a fact which is crucial for what has been presented in section 3.

This claim can be verified directly in the simplest cases. Let us first consider the Volterra
equation (3), rewriting it now as

∂

∂t1
ln

τn

τn−1
= un (104)

which in its turn leads to
∂

∂t1
ln

τn+1

τn−1
= un+1 + un (105)

and show that it is compatible with (25),

∂

∂t̄1
ln

τn+1

τn−1
= 1

pn

. (106)

To do this we need auxiliary formulae for the derivatives of un and pn. The first one (which
follows from (106)) is

∂

∂t̄1
ln un = ∂

∂t̄1

(
ln

τn+1

τn−1
− ln

τn

τn−2

)
= 1

pn

− 1

pn−1
(107)

while the second one is a consequence of (104):

∂

∂t1
ln pn = ∂

∂t1

(
ln

τn+1

τn

− ln
τn

τn−1

)
= un+1 − un. (108)

Now it is easy to derive

∂

∂t̄1

(
∂

∂t1
ln

τn+1

τn−1

)
= un+1

(
1

pn+1
− 1

pn

)
+ un

(
1

pn

− 1

pn−1

)
= −pn+1 + pn−1 (109)

(we have used (107) and the fact that un = pnpn−1).
On the other hand, it follows from (106) and (108)

∂

∂t1

(
∂

∂t̄1
ln

τn+1

τn−1

)
= 1

pn

(un − un+1) = pn−1 − pn+1. (110)
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Since the right-hand sides of (109) and (110) are equal, one can conclude that
∂

∂t̄1

∂

∂t1
ln

τn+1

τn−1
= ∂

∂t1

∂

∂t̄1
ln

τn+1

τn−1
(111)

which proves the compatibility of (104) and (106).
Further we proceed by induction. Suppose that Volterra flow (104) commutes with all

the negative flows ∂/∂t̄1, ∂/∂t̄2, . . . , ∂/∂t̄j . Now our aim is to show that it commutes with the
(j + 1)th negative flow as well. Indeed, differentiating equation (24), which can be rewritten
as

∂

∂t̄j+1
ln

τn+1

τn−1
= − 1

pn

∂2

∂t̄1∂t̄j
ln τn (112)

with respect to t1, one can obtain

∂

∂t1

(
∂

∂t̄j+1
ln

τn+1

τn−1

)
= − ∂

∂t1

(
1

pn

∂2

∂t̄1∂t̄j
ln τn

)

= −
(

∂

∂t1

1

pn

)
∂2

∂t̄1∂t̄j
ln τn − 1

pn

∂

∂t̄j

(
∂2

∂t1∂t̄1
ln τn

)

= (pn+1 − pn−1)
∂2

∂t̄1∂t̄j
ln τn +

1

pn

∂

∂t̄j
pn. (113)

Here we have used the commutativity of ∂/∂t1 and ∂/∂tj as well as the identity

∂2

∂t1∂t̄1
ln τn = −pn (114)

which can be derived by differentiating (106) with respect to t1 (see section 3.1). Noting that

∂

∂t̄j
pn = −p2

n

∂

∂t̄j

1

pn

= −p2
n

∂2

∂t̄1∂t̄j
ln

τn+1

τn−1
(115)

one can rewrite (113) as

∂

∂t1

(
∂

∂t̄j+1
ln

τn+1

τn−1

)
= (pn+1 − pn−1)

∂2

∂t̄1∂t̄j
ln τn + pn

∂2

∂t̄1∂t̄j
ln

τn−1

τn+1
. (116)

On the other hand,
∂

∂t̄j+1

(
∂

∂t1
ln

τn+1

τn−1

)
= ∂

∂t̄j+1
(un+1 + un). (117)

One can obtain from (112) the following formula for the derivative of un:

∂

∂t̄j+1
un = pnpn−1

∂

∂t̄j+1

(
ln

τn+1

τn−1
− ln

τn

τn−2

)
= pn

∂2

∂t̄1∂t̄j
ln τn−1 − pn−1

∂2

∂t̄1∂t̄j
ln τn.

(118)

Substituting this expression in (117) leads to

∂

∂t̄j+1

(
∂

∂t1
ln

τn+1

τn−1

)
= (pn+1 − pn−1)

∂2

∂t̄1∂t̄j
ln τn + pn

∂2

∂t̄1∂t̄j
ln

τn−1

τn+1
. (119)

Comparing the right-hand sides of (116) and (119) one can easily see that they coincide, which
means that

∂

∂t1

∂

∂t̄j+1
ln

τn+1

τn−1
= ∂

∂t̄j+1

∂

∂t1
ln

τn+1

τn−1
. (120)

This leads by induction to the fact that all the negative Volterra flows ∂/∂t̄j commute with the
classical one, ∂/∂t1.
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